Berry-Esséen Bounds for (Absolute) Moments of Dominated Measures

Dieter Landers
Mathematisches Institut der Universität zu Köln, D-5000 Köln 41, Federal Republic of Germany

AND

Lothar Rogge

Universität-GH-Duisburg, Fachbereich 11-Mathematik, D-4100 Duisburg 1, Federal Republic of Germany

Communicated by P. L. Butzer
Received April 23, 1985

1. Introduction and Notation

Let (Ω, \mathscr{A}, P) be a probability space and $1 \leqslant s \leqslant \infty$. \mathscr{L}_{s} denotes the system of all \mathscr{A}-measurable $X: \Omega \rightarrow \mathbb{R}$ with $\|X\|_{s}<\infty$ where $\|X\|_{s}=$ $\left(\int|X|^{s} d P\right)^{1 / s}$ for $1 \leqslant s<\infty$ and $\|X\|_{\infty}=\inf \{c>0:|X| \leqslant c \quad P$-a.e. $\}$. Let $X_{n} \in \mathscr{L}_{3}, n \in \mathbb{N}$, be a sequence of independent and identically distributed (i.i.d.) random variables with variance $\sigma^{2}>0$. Put $S_{n}^{*}=1 / \sqrt{n} \sigma$ $\sum_{v=1}^{n}\left(X_{v}-P\left[X_{v}\right]\right)$, where $P\left[X_{v}\right]=\int X_{v} d P$. If $g \in \mathscr{L}_{1}$, denote

$$
d_{1}\left(g, \sigma\left(X_{1}, \ldots, X_{n}\right)\right):=\inf \left\{\left\|g-g_{0}\right\|_{1}: g_{0} \text { is } \sigma\left(X_{1}, \ldots, X_{n}\right) \text {-measurable }\right\} .
$$

Denote by Φ the standard normal distribution as well as its distribution function in \mathbb{R}.

In this paper we give conditions which guarantee that

$$
\left|P\left[\left(f \circ S_{n}^{*}\right) g\right]-\Phi[f] P[g]\right|=O\left(n^{-1 / 2}\right)
$$

for suitable functions f and g. For $g \equiv 1$ this was one of the central problems of probability theory. Results of the above kind have been proven for $g \equiv 1$, essentially for three types of functions f, namely
(a) $f=1_{(-\infty, t]}, t \in \mathbb{R}$,
(b) f is smooth and bounded,
(c) f is smooth and fulfills certain growth conditions, e.g., $f(x)=|x|^{p}$ or $f(x)=x^{p}$.
(The "smoothness" condition in (c) has been weakened strongly in [4] to a "smoothness condition in mean.")

For general functions g there exist corresponding results for functions f of type (a) and type (b) (see [1, 2]). In this paper we give results for functions f of type (c) (see Theorem 3 and the corollaries). The methods used in this paper are different from the methods used in [1,2]; they are more direct and seem to be more natural.

Theorem 3 of this paper yields for instance
(i) If $X_{n} \in \mathscr{L}_{s}, s>3$, and g is a bounded density of a p-measure Q with respect to P such that

$$
d_{1}\left(g, \sigma\left(X_{1}, \ldots, X_{n}\right)\right)=O\left(n^{-1 / 2}(\lg n)^{-s / 2}\right)
$$

then

$$
\left|Q\left[\left|S_{n}^{*}\right|^{p}\right]-\Phi\left[|x|^{p}\right]\right|=O\left(n^{-1 / 2}\right)
$$

for all $1 \leqslant p \leqslant s$.
(ii) If $X_{n} \in \mathscr{L}_{s}, s>4$, and $g \in \mathscr{L}_{s}$ is a density of a p-measure Q with respect to P such that

$$
d_{1}\left(g, \sigma\left(X_{1}, \ldots, X_{n}\right)\right)=O\left(n^{-1 / 2}(\lg n)^{-(s-11 / 2}\right)
$$

then

$$
\left|Q\left[f \circ S_{n}^{*}\right]-\Phi[f]\right|=O\left(n^{-1 / 2}\right)
$$

for each p-times differentiable f with bounded p th derivative, $p \leqslant s-1$.

2. The Results

The following concept of functions of order p is basic for this paper.

1. Definition. $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function of order $p(p \geqslant 1)$ if

$$
|f(x)-f(y)| \leqslant c|x-y|\left(1+|x|^{p-1}+|y|^{p-1}\right), \quad x, y \in \mathbb{R}
$$

with some suitable constant c. A function of order 1 is usually called a Lipschitz function.

The following remark gives important examples for functions of order p.
2. Remark. (a) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is p-times differentiable ($p \in \mathbb{N}$) with bounded p th derivative, then f is a function of order p.
(b) If $f(x)=|x|^{p}$ for some $1 \leqslant p \in \mathbb{R}$ or $f(x)=x^{p}$ for some $1 \leqslant p \in \mathbb{N}$, then f is a function of order p.

Proof. For (a) use Taylor expansion; (b) is trivial.
The following theorem is the main result of this paper. Example 4 and the discussion below show that the assumptions of Theorem 3 are essentially optimal.
3. Theorem. Let $X_{n} \in \mathscr{L}_{s}, n \in \mathbb{N}$, be i.i.d. with positive variance. Let $g \in \mathscr{L}_{r}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function of order p. Assume that

$$
d_{1}\left(g, \sigma\left(X_{1}, \ldots, X_{n}\right)\right)=O\left(n^{-1 / 2}(\lg n)^{-\bar{p} / 2}\right)
$$

for some $\bar{p} \geqslant p$ with $\bar{p}>3$. Then
(I) $\left|P\left[\left(f \circ S_{n}^{*}\right) g\right]-P\left[f \circ S_{n}^{*}\right] P[g]\right|=O\left(n^{-1 / 2}\right)$ and
(II) $\left|P\left[\left(f \circ S_{n}^{*}\right) g\right]-\Phi[f] P[g]\right|=O\left(n^{-1 / 2}\right)$
if $r>(s-2) /(s-3), 1 \leqslant p \leqslant((r-1) / r) s$ for $3<s<\infty$, or $r=\infty, 1 \leqslant p \leqslant s$ for $s=3$.

Proof. It suffices to prove (I). Relation (II) follows from (I), since by Theorem 1 of [4]

$$
\left|P\left[f \circ S_{n}^{*}\right]-\Phi[f]\right|=O\left(n^{-1 / 2}\right)
$$

Let w.l.o.g. $P\left[X_{1}\right]=0, P\left[X_{1}^{2}\right]=1$. There exist $\sigma\left(X_{1}, \ldots, X_{v}\right)$-measurable functions g_{v} such that

$$
\begin{equation*}
P\left[\left|g-g_{v}\right|\right]=d_{1}\left(g, \sigma\left(X_{1}, \ldots, X_{v}\right)\right) \leqslant c v^{-1 / 2}(\lg v)^{-\bar{p} / 2} \tag{1}
\end{equation*}
$$

Let $\mathbb{N}_{1}=\left\{2^{i}: i \in \mathbb{N}\right\}$ and put

$$
h_{2}=g_{2}, \quad h_{v}=g_{v}-g_{v / 2} \quad \text { for } \quad v \in \mathbb{N}_{1}, v \geqslant 4
$$

By (1) we have

$$
\begin{equation*}
P\left[\left|h_{v}\right|\right] \leqslant c v^{-1 / 2}(\lg v)^{-\bar{p} / 2}, \quad v \in \mathbb{N}_{1} . \tag{2}
\end{equation*}
$$

Put $N_{n}=\left\{v \in \mathbb{N}_{1}: v \leqslant n / 2\right\}$ and $j(n)=\max N_{n}$. Then for all $n \geqslant 4$

$$
g=g-g_{j(n)}+\sum_{v \in N_{n}} h_{\nu} .
$$

Hence it suffices to prove
(A) $\left|P\left[f \circ S_{n}^{*}\left(g-g_{j(n)}\right)\right]-P\left[f \circ S_{n}^{*}\right] P\left[g-g_{j(n)}\right]\right|=O\left(n^{-1 / 2}\right)$,
(B) $\sum_{v \in N_{n}}\left(P\left[\left(f \circ S_{n}^{*}\right) h_{v}\right]-P\left[f \circ S_{n}^{*}\right] P\left[h_{v}\right]\right)=O\left(n^{-1 / 2}\right)$.

Ad (A). As f is a function of order p, we have

$$
f\left(S_{n}^{*}\right)=f(0)+S_{n}^{*} R\left(S_{n}^{*}, 0\right) \quad \text { with } \quad\left|R\left(S_{n}^{*}, 0\right)\right| \leqslant c\left(1+\left|S_{n}^{*}\right|^{p-1}\right)
$$

Hence we have to prove that

$$
\begin{equation*}
\left|P\left[S_{n}^{*} R\left(S_{n}^{*}, 0\right)\left(g-g_{j(n)}\right)\right]-P\left[S_{n}^{*} R\left(S_{n}^{*}, 0\right)\right] P\left[g-g_{j(n)}\right]\right|=O\left(n^{-1 / 2}\right) \tag{3}
\end{equation*}
$$

We have that

$$
\begin{align*}
& \left|P\left[S_{n}^{*} R\left(S_{n}^{*}, 0\right)\right] P\left[g-g_{j(n)}\right]\right| \\
& \quad \leqslant c\left(P\left[\left|S_{n}^{*}\right|+\left|S_{n}^{*}\right|^{p}\right] P\left[\left|g-g_{j(n)}\right|\right]\right)=O\left(n^{-1 / 2}\right) \tag{4}
\end{align*}
$$

where the last relation follows from (1) and

$$
\sup _{n \in \mathbb{N}}\left(\left\|S_{n}^{*}\right\|_{1}+\left\|S_{n}^{*}\right\|_{p}\right)<\infty
$$

Observe that $p \leqslant s$ and $j(n) \geqslant n / 4$ for sufficiently large n.
Furthermore we have with $A_{n}=\left\{\left|S_{n}^{*}\right| \geqslant \sqrt{(s-1) \lg n}\right\}$ and $1 / r^{\prime}+1 / r=1$

$$
\begin{aligned}
& \left|P\left[S_{n}^{*} R\left(S_{n}^{*}, 0\right)\left(g-g_{j(n)}\right)\right]\right| \\
& \quad \leqslant c P\left[\left(\left|S_{n}^{*}\right|+\left|S_{n}^{*}\right|^{p}\right)\left|g-g_{j(n)}\right|\right] \\
& \quad \leqslant c(\lg n)^{p / 2} P\left[\left|g-g_{j(n)}\right|\right]+c \int_{A_{n}}\left|S_{n}^{*}\right|^{p}\left|g-g_{j(n)}\right| d P \\
& \quad \leqslant O\left(n^{-1 / 2}\right)+c n^{-p / 2} P\left[\left|S_{n}\right|^{p} 1_{A_{n}}\left|g-g_{j(n)}\right|\right]
\end{aligned}
$$

and hence by the inequality of Hölder

$$
\begin{aligned}
& \leqslant O\left(n^{-1 / 2}\right)+c n^{-p / 2}\left\|\left|S_{n}\right|^{p} 1_{A_{n}}\right\|_{r^{\prime}}\left\|g-g_{j(n)}\right\|_{r} \\
& \leqslant O\left(n^{-1 / 2}\right)+c n^{-p / 2} n^{\left(p-(s-2) / r^{\prime} / 2\right.}\|g\|_{r} \underset{(++)}{\leqslant} O\left(n^{-1 / 2}\right),
\end{aligned}
$$

where $(+)$ follows from (F1) (see end of the proof) and Lemma 8, and $(++)$ follows as $r \geqslant(s-2) /(s-3)$ implies $(s-2) / r^{\prime} \geqslant 1$.

Together with (4) we consequently obtain (3), and hence (A).
Ad (B). Since f is a function of order p we have

$$
\begin{equation*}
f\left(S_{n}^{*}\right)=f\left(\frac{S_{n}-S_{v}}{\sqrt{n}}\right)+\frac{S_{v}}{\sqrt{n}} R\left(S_{n}^{*}, \frac{S_{n}-S_{v}}{\sqrt{n}}\right) \tag{5}
\end{equation*}
$$

with

$$
\begin{align*}
\left|R\left(S_{n}^{*}, \frac{S_{n}-S_{v}}{\sqrt{n}}\right)\right| & \leqslant c\left(1+\left|S_{n}^{*}\right|^{p-1}+\left|\frac{S_{n}-S_{v}}{\sqrt{n}}\right|^{p-i}\right) \\
& \leqslant c+\frac{c}{n^{(p-1 / / 2}}\left(\left|S_{v}\right|^{p-1}+\left|S_{n}-S_{v}\right|^{p-1}\right) \tag{6}
\end{align*}
$$

Let $\mathscr{A}_{v}=\sigma\left(X_{1}, \ldots, X_{v}\right)$ and $v<n$. As h_{v} is \mathscr{A}_{v}-measurable, and hence independent from $S_{n}-S_{v}$, we have

$$
\begin{aligned}
a_{v, n}= & \left|P\left[f \circ S_{n}^{*}\left(h_{v}-P\left[h_{v}\right]\right)\right]\right| \\
= & \left\lvert\, P\left[f\left(\frac{S_{n}-S_{v}}{\sqrt{n}}\right)\left(h_{v}-P\left[h_{v}\right]\right)\right]\right. \\
& \left.+P\left[\frac{S_{v}}{\sqrt{n}} R\left(S_{n}^{*}, \frac{S_{n}-S_{v}}{\sqrt{n}}\right)\left(h_{v}-P\left[h_{v}\right]\right)\right] \right\rvert\, \\
= & \frac{1}{\sqrt{n}}\left|P\left[S_{v} R\left(S_{n}^{*}, \frac{S_{n}-S_{v}}{\sqrt{n}}\right)\left(h_{v}-P\left[h_{v}\right]\right)\right]\right| \\
\leqslant & \frac{c}{\sqrt{n}} P\left[\left|S_{v}\right|\left|h_{v}-P\left[h_{v}\right]\right|\right] \\
& +c \frac{1}{n^{p / 2}} P\left[\left(\left|S_{v}\right|^{p}+\left|S_{v}\right|\left|S_{n}-S_{v}\right|^{p-1}\right)\left|h_{v}-P\left[h_{v}\right]\right|\right] \\
\leqslant & \frac{c}{\sqrt{n}} P\left[\left|S_{v}\right|\left|h_{v}\right|\right]+\frac{c}{\sqrt{n}} P\left[\left|S_{v}\right|\right] P\left[\left|h_{v}\right|\right] \\
& +c \frac{1}{n^{p / 2}}\left\{P\left[\left|S_{v}\right|^{p}\left|h_{v}\right|\right]+P\left[\left|S_{v}\right|\left|S_{n}-S_{v}\right|^{p-1}\left|h_{v}\right|\right]\right. \\
& \left.+P\left[\left|S_{v}\right|^{p}\right] P\left[\left|h_{v}\right|\right]+P\left[\left|S_{v}\right|\left|S_{n}-S_{v}\right|^{p-1}\right] P\left[\left|h_{v}\right|\right]\right\} \\
\leqslant & c \frac{1}{n^{p / 2}} P\left[\left|S_{v}\right|^{p}\left|h_{v}\right|\right]+c \frac{1}{\sqrt{n}} P\left[\left|S_{v} h_{v}\right|\right]+c \frac{1}{\sqrt{n}} \frac{1}{(\lg v)^{3 / 2}} .
\end{aligned}
$$

Since $\sum_{v \in \mathbb{N}_{1}} 1 /(\lg v)^{3 / 2}<\infty$, we obtain (B) from Formula (F2).
It remains to prove (F 1) and (F 2).
(F1) $\quad\left(\int_{A_{n}}\left|S_{n}\right|^{q \cdot r^{\prime}} d P\right)^{1 / r^{\prime}} \leqslant c n^{\left(q-(s-2) / r^{\prime}\right) / 2}, \quad 1 \leqslant q \leqslant p$, where $\quad A_{n}=$ $\left\{\left|S_{n}^{*}\right| \geqslant \sqrt{(s-1) \lg n}\right\}$ and $1 / r^{\prime}+1 / r=1$.
(F2) $1 / n^{q / 2} \sum_{v \in N_{n}} P\left[\left|S_{v}\right|^{q}\left|h_{v}\right|\right]=O\left(n^{-1 / 2}\right), 1 \leqslant q \leqslant p$.
Proof of (F1). We have-using Lemma 9-where c is a general constant

$$
\begin{aligned}
\int_{A_{n}}\left|S_{n}\right|^{q r^{\prime}} d P & =((s-1) n \lg n)^{\left(q r^{\prime}\right) / 2} \int_{A_{n}}\left|\frac{S_{n}^{*}}{\sqrt{(s-1) \lg n}}\right|^{q r^{\prime}} d P \\
& \leqslant c(n \lg n)^{\left(q r^{\prime}\right) / 2} \sum_{k \in \mathbb{N}} P\left\{\left|S_{n}^{*}\right| \geqslant k^{1 /\left(q r^{\prime}\right)} \sqrt{(s-1) \lg n}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant c(n \lg n)^{\left(q r^{\prime}\right) / 2} \sum_{k \in \mathbb{N}}\left[\frac{1}{k^{2 s /\left(q r^{\prime}\right)}} \frac{1}{(\lg n)^{s}} \frac{1}{n^{(s-2) / 2}}\right. \\
& \left.+2 n P\left\{\left|X_{1}\right| \geqslant c k^{1 /\left(q r^{\prime}\right)} \sqrt{n \lg n}\right\}\right] \\
& \underset{(+)}{\leqslant} c n^{\left(q r^{\prime}-(s-2) / 2\right.}+c(n \lg n)^{q^{\prime} / 2} n P\left[\left|\frac{\left|X_{1}\right|}{c \sqrt{n \lg n}}\right|^{s}\right] \\
& \leqslant c n^{\left(q r^{\prime}-(s-2)\right) / 2},
\end{aligned}
$$

where the inequality $(+)$ follows, as $p \leqslant s(r-1) / r$ implies $s /\left(q r^{\prime}\right) \geqslant 1$.
Proof of (F2). The case $s=3$ and $q=1$ follows similarly as formula (15) in the proof of Theorem 2 of [1]. Let therefore $s>3$ or $q>1$. We have by Hölder

$$
\begin{aligned}
P\left[\left|S_{v}\right|^{q}\left|h_{v}\right|\right] & \leqslant c(v \lg v)^{q / 2} P\left[\left|h_{v}\right|\right]+P\left[\left|S_{v}\right|^{q} 1_{A_{v}}\left|h_{v}\right|\right] \\
& \leqslant c v^{(q-1) / 2} \delta_{q}(v)+\left\|h_{v}\right\|_{r}\left(\int_{A_{v}}\left|S_{v}\right|^{q r^{\prime}} d P\right)^{\mathrm{i} / r^{\prime}}
\end{aligned}
$$

where $\delta_{1}(v)=1 /(\lg v)^{\gamma}$ with $\gamma>1$ and $\delta_{q}(v)=1$ for $q>1$. Hence $(F 1)$ and Lemma 8 imply

$$
\begin{align*}
& \frac{1}{n^{q / 2}} \sum_{v \in N_{n}} P\left[\left|S_{v}\right|^{q}\left|h_{v}\right|\right] \\
& \quad \leqslant \frac{c}{n^{q / 2}} \sum_{v \in N_{n}} v^{(q-1) / 2} \delta_{q}(v)+\frac{c}{n^{q / 2}} \sum_{v \in N_{n}} v^{\left(q-(s-2) / r^{\prime}\right) / 2} \\
& \quad=O\left(n^{-1 / 2}\right)+\frac{c}{n^{q / 2}} \sum_{v \in N_{n}} v^{\left(q-(s-2) / r^{\prime}\right) / 2} \tag{7}
\end{align*}
$$

As $(s-2) / r^{\prime} \geqslant 1$, we have for $q>1$ that $\sum_{y \in N_{n}} \nu^{\left(q-(s-2) / r^{\prime}\right) / 2} \leqslant$ $\sum_{v \in N_{n}} v^{(q-1) / 2}=O\left(n^{(q-1) / 2}\right)$. If $q=1$ and hence $s>3$ then $(s-2) / r^{\prime}>1$ and therefore $\sum_{v \in N_{n}} v^{\left(q-(s-2) / r^{\prime}\right) / 2}=O(1)$. Consequently (7) implies (F2).

The preceding theorem has been proven (for $s>3$) under the three conditions
(i) $d_{1}\left(g, \sigma\left(X_{1}, \ldots, X_{n}\right)\right)=O\left(n^{-1 / 2}(\lg n)^{-\bar{p} / 2}\right), \bar{p}>3$ and $\bar{p} \geqslant p$,
(ii) $1 \leqslant p \leqslant((r-1) / r) s$,
(iii) $r>(s-2) /(s-3)$.

The following discussion shows that neither condition (i) nor condition (ii) can be weakened and that in (iii) we have to asume at least $r \geqslant(s-2) /(s-3)$.

Example 4 below shows that we have to assume in (i) both $\bar{p}>3$ and $\bar{p} \geqslant p$. Condition (ii) is "necessary" to guarantee the integrability of $\left(f \circ S_{n}^{*}\right) g$. Since $f \circ S_{n}^{*} \in \mathscr{L}_{s / p}$ and $g \in \mathscr{L}_{r}$, we have to assume that $1 /(s / p)+$ $1 / r \leqslant 1$, i.e., $1 \leqslant p \leqslant((r-1) / r) s$.

A slight modification of Example 5 of [2]-with $f(x)=x$--shows that for each $r<(s-2) /(s-3)$ the approximation order $O\left(n^{-1 / 2}\right)$ of our Theorem can be destroyed by a suitable $g \in \mathscr{L}_{r}$. Hence we have to assume $r \geqslant(s-2) /(s-3)$.

Similar considerations show that for the case $s=3$ the corresponding three conditions are optimal.

Condition (i) has a different structure for the cases $p>3$ and $p \leqslant 3$. If we assume, e.g., that

$$
d_{1}\left(g, \sigma\left(X_{1}, \ldots, X_{n}\right)\right)=O\left(n^{-1 / 2}(\lg n)^{-3 / 2}\right)
$$

then the proof of the preceding theorem shows that for $1 \leqslant p \leqslant 3$

$$
\left|P\left[f \circ S_{n}^{*} g\right]-P\left[f \circ S_{n}^{*}\right] P[g]\right|=O\left(n^{-1 / 2} \lg \lg n\right)
$$

Example 4 shows that this convergence order cannot be improved.
4. Example. This example shows that even for i.i.d. standard normally distributed $X_{n}, n \in \mathbb{N}$, and bounded g, the condition

$$
\begin{equation*}
d_{1}\left(g, \sigma\left(X_{1}, \ldots, X_{n}\right)\right)=O\left(n^{-1 / 2}(\lg n)^{-\bar{p} / 2}\right) \tag{*}
\end{equation*}
$$

does not imply

$$
\left|P\left[f \circ S_{n}^{*} g\right]-P\left[f \circ S_{n}^{*}\right] P[g]\right|=\left|P\left[f \circ S_{n}^{*} g\right]-\Phi[f] P[g]\right|=O\left(n^{-1 / 2}\right)
$$

if $\bar{p}=3$ or $\vec{p}<p$.
For the case $\bar{p}=3$ we choose $f(x)=x$, for the case $\bar{p}<p$ we choose $f(x)=\operatorname{sgn}(x)|x|^{p}$. In both cases we have $\Phi[f]=0$ and hence we have to choose a bounded g, fulfilling $(*)$, such that the sequence

$$
a_{n}:=\sqrt{n} P\left[f \circ S_{n}^{*} g\right], \quad n \in \mathbb{N}
$$

is unbounded.
Let $\bar{p}=3$. Since X_{n} are standard normally distributed it is easy to see that there exist disjoint sets $B_{v} \in \sigma\left(X_{1}, \ldots, X_{v}\right)$ with

$$
B_{v} \subset\left\{S_{v}^{*} \geqslant \frac{1}{2} \sqrt{\lg v}\right\} \quad \text { and } \quad P\left(B_{v}\right)=\frac{1}{v^{3 / 2}}(\lg v)^{-3 / 2}, \quad v \geqslant v_{0}
$$

Put $g=1_{B}$ with $B=\sum_{v \geqslant v_{0}} B_{v}$. Then for $n \geqslant v_{0}$

$$
d_{1}\left(g, \sigma\left(X_{1}, \ldots, X_{n}\right)\right) \leqslant \sum_{v>n} P\left(B_{v}\right)=\sum_{v>n} \frac{1}{v^{3 / 2}(\lg v)^{3 / 2}}=O\left(n^{-1 / 2}(\lg n)^{-3 / 2}\right)
$$

and with $f(x)=x$

$$
\begin{aligned}
a_{n} & =\sqrt{n} \sum_{v \geqslant v_{0}} \int_{B_{v}} S_{n}^{*} d P=\sum_{v \geqslant v_{0}} \int_{B_{v}} S_{n} d P \\
& \geqslant \sum_{v=v_{0}}^{n} \int_{B_{v}} S_{n} d P=\sum_{v=v_{0}}^{n} \int_{B_{v}} S_{v} d P \\
& \geqslant \frac{1}{2} \sum_{v=v_{0}}^{n} \sqrt{v \lg v} P\left(B_{v}\right)=\frac{1}{2} \sum_{v=v_{0}}^{n} \frac{1}{v \lg v} \geqslant c \lg \lg n .
\end{aligned}
$$

Let $\bar{p}<p$. Since $X_{n}, n \in \mathbb{N}$, are standard normally distributed there exist disjoint sets $B_{v} \in \sigma\left(X_{1}, \ldots, X_{v}\right), v \in \mathbb{N}_{1}$, such that
$B_{v} \subset\left\{S_{v}^{*} \geqslant \frac{1}{2} \sqrt{\lg v}\right\} \quad$ and $\quad P\left(B_{v}\right)=\frac{1}{v^{1 / 2}}(\lg v)^{-\bar{p} / 2}, \quad y_{0} \leqslant v \in \mathbb{N}_{1}$. Put $g=1_{B}$ with $B=\sum_{v_{0} \leqslant v \in \mathbb{N}_{1}} B_{v}$. Then for $n \geqslant v_{0}$

$$
d_{1}\left(g, \sigma\left(X_{1}, \ldots, X_{n}\right)\right) \leqslant \sum_{\mathbb{N}_{1} \ni v>n} P\left(B_{v}\right)=O\left(n^{-1 / 2}(\lg n)^{-\bar{p} / 2}\right)
$$

and with $f(x)=\operatorname{sgn}(x)|x|^{p}$ for all $n \in \mathbb{N}_{1}$

$$
\begin{aligned}
a_{n} & =\sqrt{n} \sum_{v_{0} \leqslant v \in \mathbb{N}_{1}} \int_{B_{v}} \operatorname{sgn}\left(S_{n}^{*}\right)\left|S_{n}^{*}\right|^{p} d P \\
& \geqslant \sqrt{n} \int_{B_{n}} \operatorname{sgn}\left(S_{n}^{*}\right)\left|S_{n}^{*}\right|^{p} d P \geqslant c \sqrt{n}(\lg n)^{p / 2} P\left(B_{n}\right) \\
& =c(\lg n)^{(p-\bar{p}) / 2} \underset{n \in \mathbb{N}_{1}}{ } \infty,
\end{aligned}
$$

where (t) follows from

$$
\int_{B_{v}} \operatorname{sgn}\left(S_{n}^{*}\right)\left|S_{n}^{*}\right|^{p} d P \geqslant 0 \quad \text { for all } v_{0} \leqslant v \in \mathbb{N}_{1}
$$

which can be seen by direct computation.
5. Corollary. Let $X_{n} \in \mathscr{L}_{s}, n \in \mathbb{N}$, be i.i.d. with positive variance and $s>4$. Let $g \in \mathscr{L}_{s}$ be a density of a p-measure Q with respect to P and assume that

$$
d_{1}\left(g, \sigma\left(X_{1}, \ldots, X_{n}\right)\right)=O\left(n^{-1 / 2}(\lg n)^{-(s-1) / 2}\right)
$$

Then for all $p \in \mathbb{R}$ with $1 \leqslant p \leqslant s-1$

$$
\left|Q\left[\left|S_{n}^{*}\right|^{p}\right]-\Phi\left[|x|^{p}\right]\right|=O\left(n^{-1 / 2}\right)
$$

and for all $p \in \mathbb{N}$ with $1 \leqslant p \leqslant s-1$

$$
\left|Q\left[\left(S_{n}^{*}\right)^{p}\right]-\Phi\left[x^{p}\right]\right|=O\left(n^{-1 / 2}\right)
$$

Proof. We have $\bar{p}:=s-1$ and $\bar{p} \geqslant p$. Furthermore $r:=s>$ $(s-2) /(s-3)$, and $1 \leqslant p \leqslant s(r-1) / r$ for $1 \leqslant p \leqslant s-1$. Moreover $f(x)=|x|^{p}$, respectively $f(x)=x^{p}$, are functions of order p (see Remark 2b). Hence the assertion follows from Theorem 3 , using $P[g]=1$.
6. Corollary. Let $X_{n} \in \mathscr{L}_{s}, n \in \mathbb{N}$, be i.i.d. with positive variance and $s>4$. Let $g \in \mathscr{L}_{s}$ be a density of a p-measure Q with respect to P and assume that

$$
d_{1}\left(g, \sigma\left(X_{1}, \ldots, X_{n}\right)\right)=O\left(n^{-1 / 2}(\lg n)^{-(s-1) / 2}\right)
$$

Let f be a p-times differentiable function with bounded pth derivative, where $p \leqslant s-1$. Then

$$
\left|Q\left[f \circ S_{n}^{*}\right]-\Phi[f]\right|=O\left(n^{-1 / 2}\right) .
$$

Proof. Direct consequence of Theorem 3 and Remark 2a.
The next corollary is an extension of a result of [2] from bounded to arbitrary Lipschitz functions.
7. Corollary. Let $X_{n} \in \mathscr{L}_{s}, n \in \mathbb{N}$, be i.i.d. with positive variance. Let $g \in \mathscr{L}_{r}$ be a density of Q with respect to P and assume that

$$
d_{1}\left(g, \mathscr{A}_{n}\right)=O\left(n^{-1 / 2}(\lg n)^{-(3 / 2+\varepsilon)}\right) \quad \text { for some } \varepsilon>0 .
$$

Then we have for each Lipschitz function f

$$
\left|Q\left[f \circ S_{n}^{*}\right]-\Phi[f]\right|=O\left(n^{-1 / 2}\right)
$$

if $r>(s-2) /(s-3)$ for $s>3$ and $r=\infty$ for $s=3$.
Proof. Direct consequence of Theorem 3.
For the sake of completeness we cite the following two lemmas. Lemma 8 is Lemma 5 of [2], Lemma 9 is proven in [3].
8. Lemma. Let $1 \leqslant r \leqslant \infty$ and $g \in \mathscr{L}_{r}$. Let $\mathscr{A}_{0} \subset \mathscr{A}$ be a sub- σ-field and g_{0} a \mathscr{A}_{0}-measurable function with $\left\|g-g_{0}\right\|_{1}=d_{1}\left(g, \mathscr{A}_{0}\right)$. Then $\left\|g_{0}\right\|_{r} \leqslant 2\|g\|_{r}$.
9. Lemma. Let $X_{n} \in \mathscr{L}_{s}, n \in \mathbb{N}, s \geqslant 3$ be i.i.d. with mean 0 and variance 1 . Then there exist constants c_{1} and c_{2} such that for $t \geqslant \sqrt{(s-1) \lg n}$

$$
P\left\{\left|S_{n}^{*}\right| \geqslant t\right\} \leqslant c_{1} \frac{1}{t^{2 s} n^{(s-2) / 2}}+2 n P\left\{\left|X_{1}\right|>c_{2} t \sqrt{n}\right\}
$$

References

1. D. Landers and L. Rogge, Exact approximation orders in the conditional central limit theorem, Z. Wahrsch. Verw. Gebiete 66 (1984), 227-244.
2. D. Landers and L. Rogge, Uniform normal approximation orders for families of dominated measures, J. Approx. Theory 45 (1985), 99-121.
3. R. Michel, Nonuniform central limit bounds with applications to probabilities of deviations, Ann. Probab. 4 (1976), 102-106.
4. T. J. Sweeting, Speeds of convergence for the multidimensional central limit theorem, Ann. Probab. 5 (1977), 28-41.
