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1. INTRODUCTION AND NOTATION

Let (2, o7, P) be a probability space and 1<s< 0. %, denotes the
system of all o/-measurable X:Q—> R with |X],<co where |X|,=
(f1X]°dP)"* for 1<s<oo and ||X|,=inf{c>0: |X|<c P-ae.}. Let
X, e%, neN, be a sequence of independent and identically distributed
(iid.) random variables with variance ¢°>0. Put S*= 1/\/;;0
S (X,—P[X,]), where P[X,]=( X, dP. If ge %, denote

v=1
d(g, o(Xy, .., X)) :=1inf{||g — goll1: &0 is (X}, .., X,,)-measurable }.

Denote by @ the standard normal distribution as well as its distribution
function in R.
In this paper we give conditions which guarantee that

|PL(fS¥) g]—@L[f1PLgll=0(n""?)

for suitable functions f and g. For g=1 this was one of the central
problems of probability theory. Results of the above kind have been proven
for g =1, essentially for three types of functions £, namely

(@) f=1_4,. teR,
(b) fis smooth and bounded,
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(c) fis smooth and fulfills certain growth conditions, e.g., f(x) = |x|*?
or f(x)=x".

(The “smoothness” condition in {c) has been weakened strongly in [4] to a
“smoothness condition in mean.”)

For general functions g there exist corresponding results for functions f
of type (a) and type (b) (see [1,2]). In this paper we give results for
functions f of type (c¢) (see Theorem 3 and the corollaries). The methods
used in this paper are different from the methods used in {1, 27; they are
more direct and seem to be more natural.

Theorem 3 of this paper yields for instance

(iy If X,e¥, s>3, and g is a bounded density of a p-measure Q
with respect to P such that

di(g, o(X,, .., X,))=O(n—"*(1g n)~*?),
then
|Q[IS*|7]— ®[|x|7]| = O(n ')
forall 1< p<s.

(i) If X, e %, s>4, and ge &, is a density of a p-measure Q with
respect to P such that

di(g, o(X,,..X,)= O(n—2(Ign)~¢—172),
then
Q[ foS*]1—®[f]=0(n""?)

for each p-times differentiable f with bounded pth derivative, p <s— 1.

2. THE RESULTS
The following concept of functions of order p is basic for this paper.

1. DermNITION.  f: R — R is a function of order p (p= 1) if

)= fI<clx—plA+IxI”" T+ y1771),  x yeR,

with some suitable constant ¢. A function of order 1 is usually called a
Lipschitz function.

The following remark gives important examples for functions of order p.

2. Remark. (a) If fR—>R is p-times differentiable (peN} with
bounded pth derivative, then fis a function of order p.
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(b) Iff(x)=|x|? for some 1< peR or f(x)=x” for some 1 < peN,
then f is a function of order p.

Proof. For (a) use Taylor expansion; (b} is trivial.

The following theorem is the main result of this paper. Example 4
and the discussion below show that the assumptions of Theorem 3 are
essentially optimal.

3. THEOREM. Let X, €%, necN, be iid with positive variance. Let
ge Y, and f: R—> R be a function of order p. Assume that

di(g, o(X 1, ., X)) =O(n~'(Ign)~"?)

Jor some p= p with p> 3. Then
() |PL(f>S¥) g]l—PLf-S¥I1PLgll=0(n""?) and
(1) |PL(f=S}) g]l—@[f1Plgll=0(n""?)

Fr>6=2)(s=3), I<p<((r—1)/r)s for 3<s<oo, orr=00, I<p<s
for s=3.

Proof. 1t suffices to prove (I). Relation (II} follows from (I), since by
Theorem 1 of [4]

|PLfoS¥]1—@Lf1=0(n""?)

Let wlo.g P[X,]1=0, P[X?]=1. There exist a(X|, .., X,)-measurable
functions g, such that

Pllg—g)1=di(g (X}, .. X,))<ov™ (g v) 72 (1)
Let N, ={2"ieN} and put
h,=g., h=g,—-g, for veN, v>4
By (1) we have
Pllh,|]1<ev (g v) 77, veN,. (2)
Put N,={veN,;:v<n/2} and j(n)=max N,. Then for all n>4

g£=€8— gj(n)+ Z hv'

ve Ny

Hence it suffices to prove

(A) |PLfoSHg— giw)]—PLf*SF] PLg— gjm1l=0(n"1?),
(B) X,en(PL(foS¥*)h,1—PLfS¥]1P[h]1)=0(n"""?).
Ad (A). As fis a function of order p, we have

F(S¥)=f(0)+ SE¥R(S,0)  with  [R(S¥ 0) <c(1+|SH?")
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Hence we have to prove that
|PLSFR(S}, 0)(g — &)1 — PLSFR(S¥, 0)1 PLg— g, ]I=0(n""). (3)
We have that
IPLSYR(S, 0)] PLg— gl
<c(PLIS¥ + 1871 PLIg — gyml 1) = O~ ), (4}
where the last relation follows from (1) and

sup([1Sx[ls + 11571 ,) < o0;

neN

Observe that p<s and j(n) = n/4 for sufficiently large #.
Furthermore we have with 4, = {|S¥|>./(s—1)lgn} and 1/r'+1/r=1

IPLSTR(SY, 0)(g — &) ]I
<cPLUSHI+ ISP g — &im! ]

<ellgn) PLIg— g1+ | ISH7 18~ gl dP

< O(n™P)+en PRSI 1, 18— il ]

and hence by the inequality of Hélder

SO ") +en 2| [S)7 Ll g — gmll»
< 0(n41/2)+cn—p/ln(pA(sfl)/r’)/l Hg”r < O(n~1/2>’
(+) (++)
where {+) foliows from (F1) (see end of the proof) and Lemma 8, and

{+ +) follows as r = (s —2)/(s — 3) implies (s —2)/r' = 1.
Together with (4) we consequently obtain (3), and hence (A).

Ad (B). Since fis a function of order p we have

fist =1 (22 + =R (51 2=) 5)

AN S
)

S,— S8,
<c+—n—ﬁ/—2(lsv|p71+iSn—Svip“1)- (6}

with

.<c<1+iS;“|pl+

SH—S‘,)
RSz,
S

Jn
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Let &, =0(X,,..,X,) and v<n As h, is </-measurable, and hence
independent from S, —S,, we have

— |P[f=S3(h,— P[AI)]]

P [f(S"\;;S 3 (hv—Pthm]

P [%R (S S"\;;S“) (hv—P[hv])]‘
P [SVR (s S’j; ) (hV—P[th)]

PLIS,| |h,— P[A,]I]

(5)

+%i

1
¢ 5 PLUSI"+ 18,118, = S,17 ") lh,—P[A,]|]

PLIS,| Al 1+—=PLIS,I1 P[lAl]
7 7
+c

W {PLISI? b1+ PLIS,I IS, = S,177 " [A]]
+ PLIS,|71 P[1A,) 1+ PLIS,| IS, —S,17~ "1 P[] 1}

1 1
p/2P[|S |7 |h, |]+C\/—P[|S h, |]+C\/—(lgv 372
Since Y, ., 1/(1g v)** < o0, we obtain (B) from Formula (F2).

It remains to prove (F1) and (F2).

(F1) (J4, 1S, dP)/" <en @622 1<q<p, where A4,=
{|S*¥|>/(s—1)1gn} and 1/r' + 1/r=1.
(F2) l/nt]/2 ZVEN,, P[lSv|q |hv|] = O(n'l/z), 1<q<p.

Proof of (F1). We have—using Lemma 9—where ¢ is a general
constant

, S* ar’

S| dP=((s— ) nign) | |—t—e—=
Ln| | ((s—1)nlg Ln —

<c(nlgn)("")/2 Z P{IS,’,"]>k1/("")«/(s—1)lgn}

keN
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1 i 1
k2s/(qr) (}g i’l) n {s—2)/2

+2nP{|X | = k" /nig n}]

[} ’Xl
< enldr' =6 =202 4 o(n 1g n)e nPL

<c(nlgn)@? Z {:

|

where the inequality (+ ) follows, as p <s(r— 1)/r implies s/(gr') = 1.

f—(s—2))/2
Scn(qr (s ))/,

Proof of (F2). The case s=3 and g=1 follows similarly as formula
(15) in the proof of Theorem 2 of [1]. Let therefore s >3 or 4> 1. We have
by Holder

PLIS,I? AT < c(v1g V)2 P11+ PLIS,I L, IA)]
<cvlom 2 5q<v)+|ihva1,(j 5,1 dP)’/r,

where 6,(v)=1/(lgv)” with y>1 and 06,(v)=1 for g>1. Hence (F1) and
Lemma 8 imply

—7 L PLSIIA]

ve Ny

g~ 1y2 - s— 202
q/2 Sov ) (V)+n"/2 v

ve Ny ve N,

¢ P
ZO(”\UZ)*’;@ DI A (7)

ve N,

As (s—2)/r'>1, we have for ¢g>1 that 3,6, v G722
Toen VT2 =0(n'Y"17?) If g=1 and hence s> 3 then (s—2)/r'>1 and
therefore ¥, . v, v'9~ 722 = O(1). Consequently (7) implies (F2).

The preceding theorem has been proven {for s>3) under the three
conditions
(i) di(g, o(Xy, . X)) =0~ "*(1gn)~7?), p>3 and p > p,
(#H) 1<p<((r—1)/r)s,
(i) r>(s—2)/(s—3).

The following discussion shows that neither condition (i) nor condition (ii)
can be weakened and that in (iii) we have to asume at least

= (5—-2)/(s—3).
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Example 4 below shows that we have to assume in (i) both p>3 and
p=p. Condition (ii) is “necessary” to guarantee the integrability of
(f=S8F) g Since foS}e %, and ge %, we have to assume that 1/(s/p) +
I/r<tie, 1< p<((r—1)/r)s.

A slight modification of Example 5 of [2]—with f(x)=x—shows that
for each r<(s—2)/(s—3) the approximation order O(n '?) of our
Theorem can be destroyed by a suitable g € .%,.. Hence we have to assume
rz(s—2)/(s—3).

Similar considerations show that for the case s=3 the corresponding
three conditions are optimal.

Condition (i) has a different structure for the cases p>3 and p<3. If we
assume, e.g., that

di(g o(Xy, . X,))= 0(n~1/2(1g n)—a/z),
then the proof of the preceding theorem shows that for 1 < p<3

|PLfoSkgl—PLf-S}]1P[gll=0(n"""lglign).
Example 4 shows that this convergence order cannot be improved.

4. ExampLE. This example shows that even for iid. standérd normally
distributed X,,, ne N, and bounded g, the condition
di(g, 0(Xy, ., X,)) = O(n~P(lgn) =77 (*)
does not imply
|P[foS¥g]—PLfoS¥1PLgll=|P[fS¥e]1-P[f1P[g]l=0(n""")

ifp=3orp<p.

For the case p=3 we choose f(x)=ux, for the case p<p we choose
f(x)=sgn(x) |x|”. In both cases we have @[ f]=0 and hence we have to
choose a bounded g, fulfilling (), such that the sequence

a,:=/nP[fS¥g], neN

is unbounded.
Let p=3. Since X, are standard normally distributed it is easy to see
that there exist disjoint sets B, e o(X}, ..., X,) with

1 1
BVC{SC"ZE Ig v} and P(Bv)=?/—2(lg v) 2, V= v,.

Putg=15 with B=3 ., B,. Then for n=v,

di(g, o(X, .., X,))< Z P(B,)= Z W(T;—V)—m—=0(n—1/z(lg n)=3?)

v>n y>n
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and with f(x)=x

. \/ZEJ S,’,"szZJ S dp

vV By vy B,

ideP Zf S, dP

ve=vy "By

n n I
; Jvigv P B)_E Y mzclglgn.

V= vy

a

I

-

NIP—-

Let p< p. Since X,, ne N, are standard normally distributed there exist
disjoint sets B, eg(X, .., X,), ve N, such that

| 1 -
c{S;“ZEQ/lg v} and P(B‘.):;—m(lg v) P, vo£veN,.

Put g=1, with B=3 B,. Then for nz v,

vosve Nj

dilg, olXy, ... X,))< Z P(B,)= O(rz’l/z(ig )P

Nisv>n

and with f{x}=sgn(x) |x|” for all ne N,

a,=/n Y | sen(S?)IsH7dp

vosve N By

> /n| sen(S¥)ISH dP> e /nlgn)”? P(B,)
+ B,

= C(lg n)(P*ﬁ)/z neNl, 0,

where (+) follows from

jsgn(s;f)\s,ﬂpdbo for all vo<veN,
B,

which can be seen by direct computation.

S. CorOLLARY. Let X,€ %, neN, be iid. with positive variance and
s>4. Let ge %, be a density of a p-measure Q with respect to P and assume
that :

di(g, (X}, ., X)) =0~ (Ig n)~ 1%,
Then for all pe R with 1 < p<s—1

|OLIS¥17]— @[1x|"]l = O0(n~'?),
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and for all peN with 1< p<s—1

|Q[(S7)"]1—@[x7]| =O0(n~"?).

Proof. We have p:=s5s—1 and p=p. Furthermore r:=s>
(s—2)/(s—3),and 1 < p<s(r—1)/rfor 1 < p<<s— 1. Moreover f(x) = |x|?,
respectively f(x) = x?, are functions of order p (see Remark 2b). Hence the
assertion follows from Theorem 3, using P[g]= 1.

6. COROLLARY. Let X, €%, neN, be iid with positive variance and
§>4. Let g€ ¥, be a density of a p-measure Q with respect to P and assume
that

dl(ga O-(Xl’ cees Xn)) = O(H_I/Z(lg n)—(s~ 1)/2)-

Let f be a p-times differentiable function with bounded pth derivative, where
p<s—1. Then

1QLfS¥1—@Lf1=0(n""?).
Proof. Direct consequence of Theorem 3 and Remark 2a.
The next corollary is an extension of a result of [2] from bounded to
arbitrary Lipschitz functions.
7. COROLLARY. Let X, €%, neN, be iid with positive variance. Let
ge Y, be a density of Q with respect to P and assume that
di(g, ,)=0n""(1gn)=C2+9)  for some ¢>0.
Then we have for each Lipschitz function f
1QLf=S¥1—@L[f1l=0(n""7?)
if r>(s—2)/(s—3) for s>3 and r= o0 for s=3.
Proof. Direct consequence of Theorem 3.

For the sake of completeness we cite the following two lemmas.
Lemma 8 is Lemma S of [2], Lemma 9 is proven in [3].

8. LeMMA. Letl<r< o andge ¥,. Let sy < oA be a sub-a-field and g,
a sy-measurable function with |g— golli =d\(g, 4). Then | goll, <2 ligl,.

9. LeMMA. Let X,e %, neN, s=3 be i.id with mean O and variance 1.
Then there exist constants ¢y and ¢, such that for t = ./(s—1)lgn

1
P{IS,TI >t}<clm+2nP{|X1| >Czl\/;}.
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