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1. INTRODUCTION AND NOTATION

Let (Q,.xI, P) be a probability space and 1~ s ~ 00. Z denotes the
system of all .xl-measurable X: Q -+!R with II XII s < 00 where II XII s =
(J IXl s dP)I/s for 1~ S < 00 and II XII cD = inf{c > 0: IXI ~ c P-a.e.}. Let
X n E 2'3' n EN, be a sequence of independent and identically distributed
(i.i.d.) random variables with variance a2 > O. Put S: = 1/.J7za
l:~ =, (Xv - P[XvJ), where P[XJ = JXv dP. If g E 2'" denote

d,(g, a(X" ..., X n )) := inf{ Ilg- gall,: go is a(X" ..., Xn)-measurable}.

Denote by <P the standard normal distribution as well as its distribution
function in !R.

In this paper we give conditions which guarantee that

IP[(f 0 S:) g J- <P[fJ pegJ1= O(n ~ '/2
)

for suitable functions f and g. For g == 1 this was one of the central
problems of probability theory. Results of the above kind have been proven
for g == 1, essentially for three types of functions f, namely

(a) f= 1(-oo,fJ' tE IR,

(b) f is smooth and bounded,
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(c) f is smooth and fulfills certain growth conditions, e.g.,j(x) = Ixl p

or f(x) = x p
.

(The "smoothness" condition in (c) has been weakened strongly in [4] to a
"smoothness condition in mean.")

For general functions g there exist corresponding results for functions f
of type (a) and type (b) (see [1, 2]). In this paper we give results for
functions f of type (c) (see Theorem 3 and the corollaries). The methods
used in this paper are different from the methods used in [1, 2J; they are
more direct and seem to be more natural.

Theorem 3 of this paper yields for instance

(i) If X n E 2'" s> 3, and g is a bounded density of a p-measure Q
with respect to P such that

then

for all 1~ P~ s.

(ii) If X n E 2'" s> 4, and g E 2', is a density of a p-measure Q with
respect to P such that

d ( (X X )) - O( -1/2(1 )-(S-I I/2)1 g, (J l' ... , n - n g n ,

then

for each p-times differentiable f with bounded pth derivative, p ~ S - 1.

2. THE RESULTS

The following concept of functions of order p is basic for this paper.

1. DEFINITION. f: IR ~ IR is a function of order p (p ~ 1) if

If(x)- f(y)1 ~c Ix- yl(l + IxI P -
1 + lyIP-l), X, yE IR,

with some suitable constant c. A function of order 1 is usually called a
Lipschitz function.

The following remark gives important examples for functions of order p.

2. Remark. (a) If f: IR ~ IR is p-times differentiable (p EN) with
bounded pth derivative, then f is a function of order p.
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(b) If f(x) = Ixl P for some 1 ,,:; P E IR or f(x) = x P for some 1 ,,:; pEN,
then f is a function of order p.

Proof For (a) use Taylor expansion; (b) is trivial.

The following theorem is the main result of this paper. Example 4
and the discussion below show that the assumptions of Theorem 3 are
essentially optimal.

3. THEOREM. Let X n E~, n E N, be i.i.d. with positive variance. Let
g E :.e,. and f IR ---+ IR be a function of order p. Assume that

dl(g, o-(XI , •.. , X n » = O(n- I/2(lg n)-N2)

for some p ~ p with p> 3. Then

(I) JP[(f 0 S;) g] - P[f 0 S:J P[g]1 = O(n- I
/
2) and

(II) IP[(f 0 S;) g] - cP[f] P[g] 1= O(n -1/2)

ijr>(s-2)j(s-3), 1":;p,,:;«r-1)jr)sfor 3<s<00, or r=oo, 1,,:;p":;s
for s= 3.

Proof It suffices to prove (I). Relation (II) follows from (I), since by
Theorem 1 of [4]

IP[f 0 S;] - cP[f]1 = O(n- I
/2).

Let w.l.o.g. P[X1 ] = 0, p[Xn = 1. There exist o-(Xj, ..., Xv)-measurable
functions g v such that

P[I g - g vi] = d 1(g, o-(X1 , ••• , Xv))":; cv -1/2(lg v) -N2. (1)

Let N1 = {2 i
: iE N} and put

h2=g2, hv=gv-gv/2 for vENj,v~4.

By (1) we have

(2)

Put N n = {v E N I: v,,:; nj2} and j(n) = max Nn- Then for all n ~ 4

g= g- gj(ll) + I hv'
VE N n

Hence it suffices to prove

(A) IP[f 0 S:(g - gj(ll»] - P[f 0 S:J peg - gj(llal = O(n- I
/
2),

(B) LVE Nn(P[(f 0 S:) hv ] - P[f 0 S:J P[hvJ) = O(n- I
/
2).

Ad (A). As 1 is a function of order p, we have

I(S;) = 1(0) + S:R(S:, 0) with
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Hence we have to prove that
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We have that

IP[S,~R(S:,O)J P[g- gj(n)JI

~ C(P[!S:I + IS:IPJ P[lg - gj(nll J) = O(n- l
/
2

), (4)

where the last relation follows from (1) and

sup(IIS:lll + IIS:ll p )< 00;
nE N

Observe that p ~ sand j(n)): n/4 for sufficiently large n.

Furthermore we have with An = {IS:I ): J(s - 1) Ig n} and l/r' + l/r = 1

IP[S:R(S:, O)(g- gj(n))JI

~cP[(IS:1 + IS:IP) Ig- gj(n,l]

~ cOg nV/2 P[I g - gj(n)1 J + c f IS:I P [g - gj(n)1 dP
An

~ O(n- l
/
2)+cn-p/2P[IS IP 1 Ig-g· IJ(11 ,n An jin)1

and hence by the inequality of Holder

~ O(n -1/2) + en -p/2 II ISnl P 1AJ r' II g- gj(nlll r

~ O(n- 1/ 2)+ cn-p/2n(P-(s-2l/r')/21Igllr ~ O(n- l /2),
(+) (+ +)

where (+) follows from (Fl) (see end of the proof) and Lemma 8, and
(+ +) follows as r?;; (s-2)/(s-3) implies (s-2)jr'?;; 1.

Together with (4) we consequently obtain (3), and hence (A).

Ad (B). Since f is a function of order p we have

(5)

with
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Let sfv= a(X1, ..., Xv) and v < n. As hv is ~-measurable, and hence
independent from Sn - Sv, we have

c c
~~P[ISvllhvIJ+ ~P[ISvIJP[lhvIJ

1
+c-/2 {P[ISvI P IhvlJ +P[ISvIISn-Svlp-l IhvlJ

nP

+P[ISvIPJ P[lhvlJ +P[ISvIISn-SvIP-1J P[lhvIJ}

1 1 1 1
~c----pP[ISvIPlhvIJ+c ;:::P[ISvhvIJ+c ;:::(1 )3/2·

nP yn y n g v

Since Lve N[ l/(lg V)3/2 < 00, we obtain (B) from .Formula (F2).

It remains to prove (F1) and (F2).

(F1) (SAnISnlq·r'dP)1/r'~cn(q-(S-2)/r'l/2, l~q~p, where A n=

{IS:I?: J(s-l)lg n} and l/r' + l/r = 1.

(F2) 1/nq/2LveNnP[ISvlqlhvIJ=O(n-l/2), l~q~p.

Proof of (F1), We have-using Lemma 9-where c is a general
constant

f ISnlqr'dP=((s-1)nlgn)(qr'l/2f I S: \qr'dP
An An J(s-l)lgn

~ c(n 19 n)(qr')/2 I P{ IS:I ?: k1/(qr') Jr-(s---l-)-lg-n}
keN
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(r')/2 ,,[ 1 1 1
~ c(n 19 n) q k:-f\J k 2s/(qr') (lg n)' n(s-2l/2

+2nP{IXl l ~ckl/(qr')~}J
, . ." IXll IS]~ cn(W -(s-2))/2 + c(n 19 n)w/2 nP ll--==

(+) c~

~ cn(qr' - (s - 2))/2,
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where the inequality (+ ) follows, as p ~ s(r - 1)/r implies s/(qr') ~ 1.

Proof of (F2). The case s = 3 and q = 1 follows similarly as formula
(15) in the proof of Theorem 2 of [1]. Let therefore s> 3 or q> 1. We have
by Holder

P[ISvlq Ihvl] ~ c(v 19 V)q/2 P[lhvl ] + P[ISvlq lA, IhvlJ

~ cv(q - 1)/2 () q( V) + IjhvIi r (t ISvl qr' dPy/r"

where ()1(v)=1/(lgv)Y with ')'>1 and 6 q(v)=l for q>1. Hence (Fl) and
Lemma 8 imply

=O( -1/2)+~" (q-(s--2)/r')/2n q/2 L, V •
n veNn

(7)

As (s-2)/r'>-1 we have for q>l that '" v(q-(s-2)/r')/2~::;..--- , £-veNn -""':::

Lv E NnV(q-l)/2 = 0(n(Q- l l/2). If q =1 and hence s> 3 then (s - 2)/r' > 1 and
therefore LV6N

n
v(Q-(s-2)/r')/2 = 0(1). Consequently (7) implies (F2).

The preceding theorem has been proven (for s> 3) under the three
conditions

(i) dl (g, u(Xl , ... , X n )) = O(n -1/2(lg n) -tiI
2

), j5 > 3 and j5 ~ p,

(ii) l~p~«r-l)/r)s,

(iii) r>(s-2)/(s-3).

The following discussion shows that neither condition 0) nor condition (ii)
can be weakened and that in (iii) we have to asume at least
r ~ (s - 2)/(s- 3).
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Example 4 below shows that we have to assume in (i) both p> 3 and
p~ p. Condition (ii) is "necessary" to guarantee the integrability of
(ioS:) g. SincefoS:E~/p and gE2,., we have to assume that 1/(s/p) +
l/r<l, i.e., l<p«(r-l)/r)s.

A slight modification of Example 5 of [2]-with f(x) = x-shows that
for each r«s-2)/(s-3) the approximation order O(n- 1

/
2

) of our
Theorem can be destroyed by a suitable g E 2,.. Hence we have to assume
r~(s-2)/(s-3).

Similar considerations show that for the case s = 3 the corresponding
three conditions are optimal.

Condition (i) has a different structure for the cases p > 3 and p <3. If we
assume, e.g., that

then the proof of the preceding theorem shows that for 1 <p <3

IP[f 0 S:g] - P[foS:] P[g]1 = O(n- 1
/
2 Ig 19 n).

Example 4 shows that this convergence order cannot be improved.

4. EXAMPLE. This example shows that even for i.i.d. standard normally
distributed X,,, n EN, and bounded g, the condition

does not imply

JP[foS:g] -P[f0S:] P[g]1 = IP[foS:g] -cP[f] P[g]J =O(n- 1
/
2

)

if p= 3 or p< p.
For the case p= 3 we choose f(x) = x, for the case p< p we choose

f(x) = sgn(x) Ixl p. In both cases we have cP[f] = 0 and hence we have to
choose a bounded g, fulfilling (*), such that the sequence

an := j;; P[f 0 S:g], n E N

is unbounded.
Let p= 3. Since X n are standard normally distributed it is easy to see

that there exist disjoint sets B vE u(X1 , ... , Xv) with

and 1 -3/2P(BJ =372 (lg v) ,
v

Put g= Is with B= Lv;.vo B v. Then for n ~ Va
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and with f(x) = x

an=j;t L f S:dP= I f Sn dP
v~ vo B v v ~ vo Bv

;?; f f SndP = f f S vdP
V=VQ Bv V=VQ Bv

1 n 1 n 1
;?;"2 I ~ P(BJ ="2 L ~;?; clg 19 n.

v=vo v=vo g
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Let p < p. Since X n , n EN, are standard normally distributed there exist
disjoint sets Bv Ea(X1, ..., Xv), V EN l' such that

and _ 1 -p/2P(B,.) -172 (lg v) ,
v

d1(g,a(X1,···,Xn)):::; I P(Bv)=O(n-112(lgn)-i'12)
Nt '3v>n

and withf(x) = sgn(x) Ixl P for an nEN I

an = j;t I J sgn(Sn IS:I PdP
vo~ VE Nt Bv

where (+ ) follows from

J sgn(S:) IS:IP dP;?;O
B,.

which can be seen by direct computation.

5. COROLLARY. Let X nE 5l's' n EN, be i.i.d. with positive variance and
s> 4. Let g E ~ be a density of a p-measure Q with respect to P and assume
that

Then for all p E IR with 1 :::; p :::; s - 1
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and for all pEN with 1~ p ~ s - 1

Proof We have fi:= s - 1 and fi ~ p. Furthermore r := s >
(s- 2)/(s - 3), and 1~ p ~ s(r -1 )/rfor 1~ p ~ s -1. Moreoverf(x) = IxI P,

respectively f(x) = x P, are functions of order p (see Remark 2b). Hence the
assertion follows from Theorem 3, using P[g] = 1.

6. COROLLARY. Let X n E 2" n EN, be U.d. with positive variance and
s> 4. Let g E 2, be a density of a p-measure Q with respect to P and assume
that

Let f be a p-times differentiable function with bounded pth derivative, where
p ~s-1. Then

IQ[faS:] - cP[f]1 = O(n- 1
/
2

).

Proof Direct consequence of Theorem 3 and Remark 2a.

The next corollary is an extension of a result of [2] from bounded to
arbitrary Lipschitz functions.

7. COROLLARY. Let X n E 2" n EN, be U.d. with positive variance. Let
g E ff',. be a density of Q with respect to P and assume that

for some e > O.

Then we have for each Lipschitz function f

IQ[fo S:] - cP[f]1 = O(n- 1
/
2

)

if r > (s - 2)/(s - 3) for s > 3 and r = 00 for s = 3.

Proof Direct consequence of Theorem 3.

For the sake of completeness we cite the following two lemmas.
Lemma 8 is Lemma 5 of [2], Lemma 9 is proven in [3].

8. LEMMA. Let 1~ r ~ 00 and gE ff',.. Let .% c.sl1 be a sub-rr-field and go
a .%-measurablefunction with Ilg-golll=d1(g,.sI10 )' Then Ilgollr~21Igllr'

9. LEMMA. Let X n E 2" n EN, s ~ 3 be i.i.d. with mean 0 and variance 1.
Then there exist constants C1 and C2 such that for t ~ J (s - 1) 19 n

P{IS:I ~ t} ~ C1 t2Sn(~-2)/2 + 2nP{IX1 1 > C2 t ~}.
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